To create an elevation profile in Python, you can use various libraries and data sources. Here, I’ll provide a simple example using Python and the Matplotlib library to visualize elevation data along a path. We’ll also use the SRTM (Shuttle Radar Topography Mission) dataset, which provides elevation data for most of the Earth’s landmasses.
- Install required libraries: First, you need to install the following libraries if you haven’t already:
- Matplotlib: for plotting.
- Numpy: for numerical operations.
- OpenTopography API (optional): for downloading elevation data. You can also use other sources or local elevation data.
pip install matplotlib numpy opentopography-py
Code language: Python (python)
- Create a Python script to generate an elevation profile:
import numpy as np
import matplotlib.pyplot as plt
import opentopography
def get_elevation_data(latitude, longitude, distance_km):
# You can replace this with your own elevation data source or API.
# Here, we are using OpenTopography to download data.
elevation_data = opentopography.get_elevation([longitude], [latitude], meters=True, sources="SRTM1")
elevation_profile = elevation_data[0]["elevationProfile"]
# Convert the distance to kilometers.
distances_km = np.linspace(0, distance_km, len(elevation_profile))
return distances_km, elevation_profile
def plot_elevation_profile(distances_km, elevation_profile):
plt.figure(figsize=(10, 5))
plt.plot(distances_km, elevation_profile)
plt.title("Elevation Profile")
plt.xlabel("Distance (km)")
plt.ylabel("Elevation (meters)")
plt.grid()
plt.show()
if __name__ == "__main__":
# Replace with your desired latitude, longitude, and path distance.
latitude = 37.7749 # Example: San Francisco, CA
longitude = -122.4194
path_distance_km = 10
distances_km, elevation_profile = get_elevation_data(latitude, longitude, path_distance_km)
plot_elevation_profile(distances_km, elevation_profile)
Code language: Python (python)
- Replace the
latitude
,longitude
, andpath_distance_km
values with your desired location and path distance. This script will download elevation data using OpenTopography (you can use other sources) and then plot the elevation profile.Make sure you have an active internet connection when running this script, as it fetches data from a remote source (OpenTopography in this case).
Remember that there are many sources of elevation data, and you may need to adapt the data retrieval part of the code to match your specific requirements or data sources if needed.
Visualize digital elevation models in 3D using python
Visualizing Digital Elevation Models (DEMs) in 3D using Python can be achieved using libraries like Matplotlib and mayavi. In this example, I’ll show you how to visualize a DEM in 3D using Matplotlib:
- Install Dependencies: First, make sure you have the necessary libraries installed. You can install them using pip:
pip install numpy matplotlib
Code language: Python (python)
- Load DEM Data: You should have a DEM file in GeoTIFF or similar format. Use the GDAL library (as mentioned in the previous response) to load the DEM data into a NumPy array.
- 3D Visualization with Matplotlib:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Load your DEM data into a NumPy array
# Replace 'elevation_array' with your actual DEM data
# For example, elevation_array = dataset.ReadAsArray()
# Create a grid of coordinates for the DEM
x, y = np.meshgrid(np.arange(0, elevation_array.shape[1]), np.arange(0, elevation_array.shape[0]))
# Create a 3D figure
fig = plt.figure()
ax = fig.gca(projection='3d')
# Plot the surface using Matplotlib's plot_surface function
surf = ax.plot_surface(x, y, elevation_array, cmap='terrain', rstride=1, cstride=1, linewidth=0, antialiased=False)
# Add a color bar which maps values to colors
fig.colorbar(surf, shrink=0.5, aspect=5)
# Set labels and title
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Elevation (meters)')
ax.set_title('3D DEM Visualization')
# Show the plot
plt.show()
Code language: Python (python)
In this code:
- We create a grid of x and y coordinates that correspond to the rows and columns of the DEM data.
- We use Matplotlib’s
plot_surface
function to create the 3D surface plot. - The
cmap='terrain'
argument specifies a colormap for the elevation data, which gives a terrain-like appearance. - Finally, we set labels, a title, and display the 3D plot using
plt.show()
.
Make sure to replace elevation_array
with your actual DEM data loaded from the file. You can further customize the visualization by adjusting parameters like colormap, lighting, and viewpoint.
Note that this is a basic example of 3D DEM visualization. Depending on your specific needs and data, you can explore more advanced visualization techniques and libraries like Mayavi for more interactive 3D visualizations.
Read More;
- Python cProfile to CSV With Example
- Python Profile to File With Examples
- Python Profile Memory Usage
- Python cProfile Snakeviz With Example
- Data Profiling in Python Using Pandas
- Python Profiling vscode With Example
- Python Profiling Flame Graph With Example
- Python cProfile Docker With Example
- Python cProfile Graphviz With Example
- Python eda Profiling With Example
- Python cProfile Limit Depth
- Python cProfile to HTML With Example