A Voigt profile, also known as a Voigt function or Voigt distribution, is a convolution of a Gaussian distribution and a Lorentzian distribution.
It is often used in spectroscopy and other fields to model spectral lines that exhibit both Gaussian and Lorentzian broadening.
You can create a Voigt profile in Python using various libraries, but I’ll show you how to do it using the scipy
library, which provides a built-in function for generating Voigt profiles.
Here’s an example of how to create a Voigt profile using scipy
:
import numpy as np
from scipy.special import wofz
import matplotlib.pyplot as plt
def voigt_profile(x, sigma, gamma):
"""
Calculate the Voigt profile.
Parameters:
x (array-like): The x-values at which to calculate the profile.
sigma (float): The Gaussian standard deviation.
gamma (float): The Lorentzian full-width at half-maximum.
Returns:
array-like: The Voigt profile values at the specified x-values.
"""
z = (x + 1j * gamma) / (sigma * np.sqrt(2))
v = wofz(z).real / (sigma * np.sqrt(2 * np.pi))
return v
# Define parameters
x = np.linspace(-5, 5, 1000) # X-values
sigma = 1.0 # Gaussian standard deviation
gamma = 0.5 # Lorentzian full-width at half-maximum
# Calculate the Voigt profile
profile = voigt_profile(x, sigma, gamma)
# Plot the Voigt profile
plt.plot(x, profile, label='Voigt Profile')
plt.xlabel('X')
plt.ylabel('Intensity')
plt.legend()
plt.title('Voigt Profile')
plt.grid(True)
plt.show()
Code language: Python (python)
In this code:
- We import the necessary libraries, including
numpy
for numerical operations,scipy.special.wofz
for the Faddeeva function (required for the Voigt profile calculation), andmatplotlib
for plotting. - We define a
voigt_profile
function that calculates the Voigt profile at a given set of x-values using the formula involving the Faddeeva function. - We specify the parameters
sigma
(Gaussian standard deviation) andgamma
(Lorentzian full-width at half-maximum). - We calculate the Voigt profile for the specified x-values.
- Finally, we plot the Voigt profile using Matplotlib.
You can adjust the sigma
and gamma
parameters to see how they affect the shape of the Voigt profile.
Fitting the data with a voigt function in python
Fitting data with a Voigt function in Python involves a different process than simply creating a Voigt profile. To fit data with a Voigt function, you typically use a curve fitting library like scipy.optimize.curve_fit
to find the parameters that best describe your data. Here’s an example of how to fit data with a Voigt function using scipy
:
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from scipy.special import wofz
# Define the Voigt profile function
def voigt_profile(x, amplitude, center, sigma, gamma):
z = ((x - center) + 1j * gamma) / (sigma * np.sqrt(2))
v = amplitude * wofz(z).real / (sigma * np.sqrt(2 * np.pi))
return v
# Generate some synthetic data
x_data = np.linspace(-5, 5, 100)
y_data = voigt_profile(x_data, amplitude=1.0, center=0.0, sigma=1.0, gamma=0.5) + np.random.normal(0, 0.05, len(x_data))
# Fit the data to the Voigt profile function
initial_guess = (1.0, 0.0, 1.0, 0.5) # Initial parameter guess
params, covariance = curve_fit(voigt_profile, x_data, y_data, p0=initial_guess)
# Extract the fitted parameters
amplitude_fit, center_fit, sigma_fit, gamma_fit = params
# Plot the original data and the fitted Voigt profile
plt.figure(figsize=(8, 6))
plt.plot(x_data, y_data, 'b.', label='Data')
plt.plot(x_data, voigt_profile(x_data, *params), 'r-', label='Fit')
plt.xlabel('X')
plt.ylabel('Intensity')
plt.legend()
plt.title('Voigt Function Fit')
plt.grid(True)
plt.show()
# Print the fitted parameters
print("Amplitude:", amplitude_fit)
print("Center:", center_fit)
print("Sigma:", sigma_fit)
print("Gamma:", gamma_fit)
Code language: Python (python)
In this code:
- We define the
voigt_profile
function as before, which calculates the Voigt profile. - We generate synthetic data with some added noise.
- We use
curve_fit
fromscipy.optimize
to fit the synthetic data to the Voigt function. We provide an initial guess for the parameters. - We plot both the original data and the fitted Voigt profile.
- We print the fitted parameters, which represent the amplitude, center, sigma (Gaussian standard deviation), and gamma (Lorentzian full-width at half-maximum) of the Voigt function.
You can adapt this code to fit your own data by replacing x_data
and y_data
with your actual data points. Adjust the initial guess as needed to improve the fit.
Read More;
- Best Python cProfile Alternative
- Python cProfile Filter
- Python cProfile Gunicorn With Example
- Python Profile Guided Optimization
- Profiling in FastAPI Python Applications
- Python cProfile Export With Example
- Python Error: “AttributeError: __enter__”
- subprocess-exited-with-error in Python
- How to Use Python cProfile async
- Python Profile likelihood
- Python Elevation Profile With Example
- Python’s Pandas Library vs Pandas Profiling